The capsule supports survival but not traversal of Escherichia coli K1 across the blood-brain barrier.
نویسندگان
چکیده
The vast majority of cases of gram-negative meningitis in neonates are caused by K1-encapsulated Escherichia coli. The role of the K1 capsule in the pathogenesis of E. coli meningitis was examined with an in vivo model of experimental hematogenous E. coli K1 meningitis and an in vitro model of the blood-brain barrier. Bacteremia was induced in neonatal rats with the E. coli K1 strain C5 (O18:K1) or its K1(-) derivative, C5ME. Subsequently, blood and cerebrospinal fluid (CSF) were obtained for culture. Viable bacteria were recovered from the CSF of animals infected with E. coli K1 strains only; none of the animals infected with K1(-) strains had positive CSF cultures. However, despite the fact that their cultures were sterile, the presence of O18 E. coli was demonstrated immunocytochemically in the brains of animals infected with K1(-) strains and was seen by staining of CSF samples. In vitro, brain microvascular endothelial cells (BMEC) were incubated with K1(+) and K1(-) E. coli strains. The recovery of viable intracellular organisms of the K1(+) strain was significantly higher than that for the K1(-) strain (P = 0.0005). The recovery of viable intracellular K1(-) E. coli bacteria was increased by cycloheximide treatment of BMEC (P = 0.0059) but was not affected by nitric oxide synthase inhibitors or oxygen radical scavengers. We conclude that the K1 capsule is not necessary for the invasion of bacteria into brain endothelial cells but is responsible for helping to maintain bacterial viability during invasion of the blood-brain barrier.
منابع مشابه
An optimized in vitro blood-brain barrier model reveals bidirectional transmigration of African trypanosome strains.
The transmigration of African trypanosomes across the human blood-brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites Trypanosoma brucei gambiense and T. b. rhodesiense are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to t...
متن کاملInvolvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells.
Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. coli promotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are n...
متن کاملArachidonic acid metabolism regulates Escherichia coli penetration of the blood-brain barrier.
Escherichia coli K1 meningitis occurs following penetration of the blood-brain barrier, but the underlying mechanisms involved in E. coli penetration of the blood-brain barrier remain incompletely understood. We have previously shown that host cytosolic phospholipase A(2)α (cPLA(2)α) contributes to E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blo...
متن کاملPertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells
Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningit...
متن کاملAdministration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1.
Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 67 7 شماره
صفحات -
تاریخ انتشار 1999